Serpin reactive center loop mobility is required for inhibitor function but not for enzyme recognition.

نویسندگان

  • D A Lawrence
  • S T Olson
  • S Palaniappan
  • D Ginsburg
چکیده

One feature that distinguishes all of the inhibitory members of the serpin gene family is the presence of a small uncharged residue at the P14 position of the reactive center loop. In this report we examine the effects of mutations at this position, in the serpin, plasminogen activator inhibitor type 1 (PAI-1). Replacement of the native P14 Thr-333 residue by an Arg (Thr-333-->Arg) resulted in complete loss of inhibitory activity toward tissue-type plasminogen activator and urokinase-type plasminogen activator. Comparison of the binding of the mutant inhibitor and wild type PAI-1 (WTPAI-1) to anhydrotrypsin indicated that the initial interaction of the two inhibitors with proteases was identical. However, whereas WTPAI-1 forms SDS-stable complexes with both plasminogen activators, the mutant PAI-1 was efficiently cleaved as a substrate. Amino-terminal sequence analysis indicated that cleavage of the mutant PAI-1 occurred at its reactive center P1-P1' Arg-Met bond. Thermal denaturation studies of native and cleaved PAIs indicated that native Thr-333-->Arg mutant had a thermal stability identical to active WTPAI-1 and that both proteins became significantly more stable following cleavage by elastase (cleaved at the P4-P3 bond). Finally, the function of recombinant PAI-1 variants containing 15 of the possible 19 amino acid substitutions at P14 were analyzed. While residue size appeared to have little effect on inhibitory activity, the presence of either a positive or a negative charge at P14, converted PAI-1 to a substrate. Taken together, these results suggest that while insertion of the reactive center loop is not essential for protease binding, it is a necessary second step required for inhibitor function. The presence of a charged residue at P14 can retard this insertion, resulting in conversion of the serpin to a substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A common neoepitope is created when the reactive center of C1-inhibitor is cleaved by plasma kallikrein, activated factor XII fragment, C1 esterase, or neutrophil elastase.

The reactive center of C1-inhibitor, a plasma protease inhibitor that belongs to the serpin superfamily, is located on a peptide loop which is highly susceptible to proteolytic cleavage. With plasma kallikrein, C1s and beta-Factor XIIa, this cleavage occurs at the reactive site residue P1 (Arg444); with neutrophil elastase, it takes place near P1, probably at residue P3 (Val442). After these cl...

متن کامل

Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 Å and full insertion of the reactive center loop into b-sheet A (a1-proteinase inhibitoryPittsburgh variantyserpin covalent complexyf luorescence resonance energy transfer)

To determine the location of the proteinase in the covalent serpin-proteinase complex we prepared seven single-cysteine-containing variants of the Pittsburgh variant of the serpin a1-proteinase inhibitor, and we labeled each cysteine with the dansyl f luorophore. The dansyl probes were used to determine proximity of the proteinase trypsin in covalent and noncovalent complexes with the serpin, b...

متن کامل

Reactive Center Loop (RCL) Peptides Derived from Serpins Display Independent Coagulation and Immune Modulating Activities.

Serpins regulate coagulation and inflammation, binding serine proteases in suicide-inhibitory complexes. Target proteases cleave the serpin reactive center loop scissile P1-P1' bond, resulting in serpin-protease suicide-inhibitory complexes. This inhibition requires a near full-length serpin sequence. Myxomavirus Serp-1 inhibits thrombolytic and thrombotic proteases, whereas mammalian neuroserp...

متن کامل

Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation.

Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulti...

متن کامل

Strand 6B deformation and residues exposure towards N-terminal end of helix B during proteinase inhibition by Serpins

UNLABELLED Serine Protease inhibitors (Serpins) like antithrombin, antitrypsin, neuroserpin, antichymotrypsin, protein C-inhibitor and plasminogen activator inhibitor is involved in important biological functions like blood coagulation, fibrinolysis, inflammation, cell migration and complement activation. Serpins native state is metastable, which undergoes transformation to a more stable state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 44  شماره 

صفحات  -

تاریخ انتشار 1994